1. Determine the amount of electrical energy (in J) used by the following devices when operated for the indicated times.
a. Hair dryer (1500 W) - operated for 5 minutes
b. Electric space heater (950 W) - operated for 4 hours
c. X-Box video game player (180 W) - operated for 2 hours
d. 42 -inch LCD television (210 W) - operated for 3 hours
a) $P \times t=6$
1500×3.00
$4,5 \times 005$
b) $D \times t=E$
$950 \times 14400=$
1.4×107

$$
4 n r s \frac{60}{\ln r} \frac{60}{\mathrm{~m}}
$$

c) $P=180 \mathrm{~m}$
Hz2hr
.77005
$=1.3 \times 100$

$1 W=1 J / L$
2. Having recently lost her job, Penny Penching is looking for every possible means of cutting costs. She decides that her 4.0-Watt clock radio alarm does not need to be on for 24 hours every day since she only needs it for waking up after her average 8-hour sleep. So she decides to plug it in before going to sleep and to unplug it when waking. Penny pays 12 cents per kiloWatt h hour for her electricity. How much money is Penny able to save over the course of a month (31 days) with her new alarm clock usage pattern?
old wage

-. 096 kw . kr
3. The power of a 1.5 -volt alkaline cell varies with the number of hours of operation. A brand new Dcell can deliver as much as 13 A through a copper wire connected between terminals. Determine the power of a brand new D-cell.

$$
\begin{array}{ll}
P=? & P=I V=19.5 \mathrm{~m} \\
V=1.5 \mathrm{r} & \\
I=13 \mathrm{~A} &
\end{array}
$$

4. A central air conditioner in a typical American home operates on a $220-\mathrm{V}$ circuit and draws about 15 A of current.
a. Determine the power rating of such an air conditioner.
b. Determine the energy consumed (in $\mathrm{kW} \cdot \mathrm{hr}$) if operated for 8 hours per day.
c. Determine the monthly cost (31 days) if the utility company charges 13 cents per $\mathrm{kW} \cdot \mathrm{hr}$.
a)

b) $p=330 \mathrm{w}$
$=3,3 \mathrm{kw}$

$$
\begin{aligned}
& t=8 h_{r} \\
& t=26.4 k w h r
\end{aligned}
$$

5. During the Christmas season, Sel Erbate uses the equivalent of 45 strings of 100 mini-bulbs to light the inside and outside of his home. Each 100-bulb string of lights is rated at 40 Watts. The average daily usage of the strings is 7 hours. The lights are used for approximately 40 days during the holiday season.
a. Determine the resistance of each string of lights. Each is powered by 110 -volt outlet.
b. Determine the energy consumed (in $\mathrm{kW} \cdot \mathrm{hr}$) by the lights over the course of 40 days.
c. If Sel pays 12 cents $/ \mathrm{kW} \cdot h r$ for electrical energy, then what is the total cost of Christmas lighting for a single season?

6. Alfredo deDarke sleeps with a 7.5 -Watt night light bulb on. He turns it on before getting in bed and turns it off 8 hours later.
a. Determine the amount of energy used during one evening in units of kilo Watt•hours.
b. Electrical energy costs 13 cents $/ \mathrm{kW} \cdot \mathrm{hr}$ where Alfredo lives. Determine the annual (365 days) cost of this practice of using a 7.5 -Watt night light.
c. Determine the annual savings if Alfredo replaced his 7.5 -Watt incandescent night light by a 0.5 Watt LED night light.
a) $P=7.5 \mathrm{~W}=.0075 \mathrm{~km}$
$t=8 \mathrm{hr}$
=.06twhr
b) $0.06 \times 365 \mathrm{~d}$
$=21.9 \mathrm{kwhrax} .13$
$=2,85$

$$
\begin{gathered}
2,85 \times 6,21, \\
=-8.19
\end{gathered}
$$

$$
\text { it } 2.65 \text { raring }
$$

Answers:

1. a. $4.5 \times 105 \mathrm{~J}$
b. $1.4 \times 107 \mathrm{~J}$
c. $1.3 \times 106 \mathrm{~J}$
d. $2.3 \times 106 \mathrm{~J}$
2. 24 cents
3. 20 W
4. a. 3300 W
b. $26 \mathrm{~kW} \cdot \mathrm{hr}$
c. $\$ 110$ per month (rounded from $\$ 106$)

5 a. $3 \times 10^{2} \Omega$ (rounded from 302.5Ω)
b. $5 \times 10^{2} \mathrm{~kW} \cdot \mathrm{hr}$ (rounded from $504 \mathrm{~kW} \cdot \mathrm{hr}$)
c. $\$ 60$ (rounded from $\$ 60.48$).
6. a. $0.060 \mathrm{~kW} \cdot \mathrm{hr}$ for one evening
b. $\$ 2.8$ for one year
c. $\$ 2.7$ savings for one year

