Physics Force and Acceleration - Hooke's Law (20 pts.)	Name: Date:
Background: In 1678, Robert Hooke announced the relationship for elastic materials that is now known upon by a force, it can be compressed, stretched or object returns to its original shape, it is said to be el original configuration once they have been distorted	as Hooke's Law. When an object is acted bent. If when the force is removed, the astic. Solids that do not return to their
In this lab you will study the force law for springs know According to Newton's Second Law force is equal to For a spring hanging from a ring stand with a mass adue to gravity. The force can also be expressed in the multiplied by the distance the spring is stretched:	mass multiplied by acceleration (F=ma). attached: F = mg where g = acceleration erms of a proportionality constant

stretched. Setting these two equations equal to each other gives kx = mg. Solving this for k gives: k = mg/x where k = the spring constant.

Objective: Plan and conduct an investigation that determines the relationship between the force exerted on a spring and the amount it stretches. Analyze data collected and determine

Procedure (3 points):

the spring constant.

- describe (steps) what is to be done/measured
- create a simple diagram

Data (4 points):

- create a table on a sheet of graph paper and attach
- include displacement, mass, acceleration, force

Analysis:

- graph of data on separate sheet (4 points)
- calculate the spring constant (k) of the spring tested.
 Show mathematical strategy/evidence.(4 points)

Conclusion: (5 points) Describe in your own terms what "spring constant. How does a large value or a small value relate to permanent deformation of the object? (Use the back of the page if required)									

		D.				
				wit		
	×					

