Part 2 NEWTON'S SECOND LAW

EQUATION:

$$
\begin{aligned}
\text { Force } & =\text { mass } X \text { acceleration } \\
F & =\mathrm{m} \mathrm{Xa}
\end{aligned}
$$

SAMPLE PROBLEM : A soccer ball accelerates at a rate of $22 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ forward when kicked by a player. The soccer ball has a mass of 0.5 kg . How much force was applied to the ball to produce this acceleration?

$$
\begin{aligned}
& \text { Force }=\text { mass } \times \text { acceleration } \\
& \text { Force }=0.5 \mathrm{~kg} \mathrm{X} 22 \mathrm{~m} / \mathrm{s} / \mathrm{s} \\
& \text { Force }=11 \mathrm{~N}
\end{aligned}
$$

Use the equation above to complete the following problems:

1. Calculate the force necessary to accelerate the following vehicles at the rate of acceleration show in the illustration.
2. How much force is needed to move a 0.1 kg snowball at a rate of $15 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ upward?
3. At lift-off, an astronaut on the space shuttle experiences an acceleration of approximately 35 $\mathrm{m} / \mathrm{s} / \mathrm{s}$ upward. What force does an 80 kg astronaut experience during this acceleration?
4. What is the acceleration of a 7 kg mass if a force of 68.6 N is used to move it toward Earth?
5. What is the acceleration of a 0.3 kg ball hit with a force of 20 N ?
6. What is the mass of an object if a force of 34 N produces an acceleration of $4 \mathrm{~m} / \mathrm{s} / \mathrm{s}$?
7. What force is needed to accelerate a $1,000 \mathrm{~kg}$ car at a rate of $35 \mathrm{~m} / \mathrm{s} / \mathrm{s}$?
8. What force is required to accelerate a 5 kg object to $6 \mathrm{~m} / \mathrm{s} / \mathrm{s}$?
9. What is the mass of an object if a force of 17 N causes it to accelerate at $1.5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$?
10. What is the acceleration of a 10 kg object if a force of 3 N is applied to it?
11. What is the mass of an object that requires a force of 25 N to accelerate at $5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$?
12. How much force is required to accelerate an $1,800 \mathrm{~kg}$ truck at $3 \mathrm{~m} / \mathrm{s} / \mathrm{s}$?
