Electricity, Energy and Magnetism

Exercises

Serier = K, +R2+R3.

Three 20 Ω resistors are connected in series across a 120 V generator. What current flows through the circuit? +=20+20+20=60-2=R1.

- Ten Xmas lights gave equal resistances. When connected to a 120 V outlet, a 2. current of 0.50 A flows through each bulb. What is the resistance of one bulb? A lamp with a resistance of 10 Ω is connected across a 12 V battery. What
- 3. resistance must be connected to the lamp to create a current of 0.50 A?

 A 20 Ω resistor and a 30 Ω resistor are connected in series and placed across
- 4. potential difference of 100 V. Find the voltage drop across each resistor.
- 5. Find the voltage across each resistor, as well as the total voltage.

a. (A) 0.10 A 30Ω

V=IR 5V=50x,10

3V=30x,10

4=3V+5V=8V

b.

50 Ω

(A) 0.10 A VEIR

6V = (40+20) x.10

T= 1460=70

6. Find the current as well as the voltage across each resistor.

a.

1.6am I

b.

c.

- 7. a. Draw a circuit consistent with the following information:
 - $V_1 = 5.0 \text{ V}$ and R_1 is an unknown resistor
 - There is a 2.0 A current measured by the ammeter next to the power source
 - $R_2 = 2.0 \Omega$.
 - b. Calculate R₁
 - c. Find the voltage of the power source.
- 8. Three known resistances are connected in series to the terminals of a power source. The potential difference at the terminals of the 3.0 Ω resistance is 12 V.

- a. What is the potential difference of the power source? $\bigvee \bigvee \bigvee$
- b. What is the voltage drop across the 4.0Ω resistor?
- c. What is the voltage drop across the 2.0Ω resistor?

Electricity, Energy and Magnetism

- 9. Use the diagram to your right, where $V_1 = 12 \text{ V}$; $V_2 = 5.0 \text{ V}$.
 - a. What is the reading on voltmeter V_3 ?
 - b. If the current flowing out of the battery was 125 mA, what would be the value of R_2 ?

Flashback

In an electric circuit, the potential difference across the terminals of a resistor was set at different levels and the resulting current intensity was measured. The measurements are recorded in the table below.

Potential Difference V(V)	Current Intensity I (A)	T
0	0	
5	1.0	
20	4.1	
35	7.1	
40	8.1	

Draw a graph using the above data and then use the graph to determine the resistance of this resistor.

Example 3

In a parallel circuit, what effect does adding more resistors have on total current?

Exercises

Electricity, Energy and Magnetism

c.

1

(answer: 25Ω .)

2.

Find the current passing through each resistor.

a.

100

b.

RET

750 = .04A

Find the missing reading for each meter. $R_1 = 20 \Omega$ and $R_2 = 40 \Omega$.

4. The electric circuit shown below consists of an ammeter A, a power supply, and resistors R_1 and R_2 connected in parallel.

What is the current intensity (I) flowing through the ammeter?

11. The following electrical circuit consists of a power source, four resistors $(R_1, R_2, R_3 \text{ and } R_4)$ and a voltmeter V_4 $(V_s = V_{total})$.

What is the current intensity (I_3) through R_3 ?

- 12. How can one 25 Ω and two 100 Ω resistors be connected so that their total resistance is 75 Ω ?
- 13. How can four 1.0 Ω resistors and one 2.0 Ω resistor be connected to give a combined resistance of 1.5 Ω ?
- 14. Four identical resistors are connected as shown. If the total voltage is 12V, find the voltage across each resistor.

