0 =

Atoms are not **CREATED** or **DESTROYED** during a chemical reaction. Scientists know that there must be the **SAME** number of atoms on each **SIDE** of the **EQUATION**. To balance the chemical equation, you must add **COEFFICIENTS** in front of the chemical formulas in the equation. You cannot **ADD** or **CHANGE** subscripts!

0 =

Step	1:	Determine	number	of	atoms
for ea	ach	element.			

 $Mg + \bigcirc O_2 \Rightarrow \bigcirc MgO$

Step 2: Pick an element that is not equal on both sides of the equation.

Mg = Mg =

Step 3: Add a coefficient in front of the formula with that element and adjust your counts.

Step 4: Continue adding coefficients to get the same number of atoms of each element on each side.

Try these:

\Box Ca + \Box O ₂	→ CaO
Ca =	Ca =
O =	O =
	→ NH ₃
N =	N =
H =	H =
$Cu_2O +$	C → Cu + CO ₂
Cu =	Cu =
O =	O =
C =	C =
	$H_2O + O_2$
H =	H =
0=	0=

Name
Balancing Act Practice Balance each equation. Be sure to show your! Remember you cannot add subscripts or place coefficients in the middle of a chemical formula.
1. \square Na + \square MgF ₂ \rightarrow \square NaF + \square Mg
Na = Mg = Mg = F = F = F =
2. $\boxed{}$ Mg + $\boxed{}$ HCl \rightarrow $\boxed{}$ MgCl ₂ + $\boxed{}$ H ₂
Mg = Mg = H = Cl = Cl =
3. \square Cl ₂ + \square KI \rightarrow \square KCl + \square I ₂
Cl =
4. \square NaCl \rightarrow \square Na + \square Cl ₂
Na = Na = Cl = Cl =
5. \square Na + \square O ₂ \rightarrow \square Na ₂ O
Na = $O = $ $Na = $ $O =$
6. \square Na + \square HCl \rightarrow \square H ₂ + \square NaCl
Na = $H = $ $Cl = $ $Na = $ $H = $ $Cl =$
7. \square K + \square Cl ₂ \rightarrow \square KCl
K = K = Cl = Cl =